
This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Liveness Verification
of Stateful Network Functions

Farnaz Yousefi, Johns Hopkins University; Anubhavnidhi Abhashkumar
and Kausik Subramanian, University of Wisconsin-Madison;

Kartik Hans, IIT Delhi; Soudeh Ghorbani, Johns Hopkins University;
Aditya Akella, University of Wisconsin-Madison

https://www.usenix.org/conference/nsdi20/presentation/yousefi

Liveness Verification of Stateful Network Functions

Farnaz Yousefi
Johns Hopkins University

Anubhavnidhi Abhashkumar
University of Wisconsin-Madison

Kausik Subramanian
University of Wisconsin-Madison

Kartik Hans
IIT Delhi⇤

Soudeh Ghorbani
Johns Hopkins University

Aditya Akella
University of Wisconsin-Madison

Abstract
Network verification tools focus almost exclusively on var-
ious safety properties such as “reachability” invariants, e.g.,
is there a path from host A to host B? Thus, they are inappli-
cable to providing strong correctness guarantees for modern
programmable networks that increasingly rely on stateful
network functions. Correct operations of such networks de-
pend on the validity of a larger set of properties, in particular
liveness properties. For instance, a stateful firewall that only
allows solicited external traffic works correctly if it eventually
detects and blocks malicious connections, e.g., if it eventually
blocks an external host E that tries to reach the internal host I
before receiving a request from I.

Alas, verifying liveness properties is computationally ex-
pensive and, in some cases, undecidable. Existing verification
techniques do not scale to verify such properties. In this work,
we provide a compositional programming abstraction, model
the programs expressed in this abstraction using compact
Boolean formulas, and show that verification of complex prop-
erties is fast on these formulas, e.g., for a 100-host network,
these formulas result in 8⇥ speedup in the verification of key
properties of a UDP flood mitigation function compared to a
naive baseline. We also provide a compiler that translates the
programs written using our abstraction to P4 programs.

1 Introduction

In recent years, network verification has emerged as a cru-
cial framework to check if networks satisfy important prop-
erties. While there are a variety of tools that differ in their
focus (e.g., verifying current data plane snapshot vs. verify-
ing a network’s control plane under failures), they all share
a common attribute: they focus mainly on verifying vari-
ous flavors of reachability invariants: Is a point in the net-
work reachable from another point [33, 34, 42, 43]? Is there
a loop-free path between them [33, 34, 42, 43]? Is the path
congested [27,29,38]? Does it traverse a waypoint [41,58]? Is

⇤Work done during an internship at Johns Hopkins University.

the reachability preserved under link failures or external mes-
sages [10, 26]? Are all datacenter shortest paths available for
routing [30]? etc. Crucially, these tools leave out a richer set
of properties that depend on networks guaranteeing liveness.

Networks today increasingly deploy complex and stateful
network functions such as intrusion detection/prevention sys-
tems (IDPS) that monitor traffic for malicious activity and
policy violations, and they prevent such activities. To rely on
such networks, operators need to verify if “something good
(a desired property) eventually happens” [47]—i.e., liveness.
As a concrete example, consider a stateful firewall with the
policy that a host E external to an enterprise is only allowed
to send traffic to an internal host I if I sends a request to E
first. The liveness property here is “will a host E that should
be allowed to send traffic to I (i.e., E was first contacted by I)
eventually get whitelisted?”, or more precisely that “the event
of I sending traffic to E leads to the firewall’s whitelisting of
E” (§3). Existing reachability-centric tools cannot verify this
property: the existence of paths from I to E does not show
whether any packet has actually traversed that path; similarly,
the reachability of I from E does not give any guarantees
whether it was established before or after I sent traffic to E.

Recent work has shown that reachability verification can be
made efficient by operating on Equivalence Classes (ECs), i.e.,
groups of packets that experience the same forwarding behav-
ior [33,34,43] on a static snapshot of the network state. How-
ever, verifying liveness is not amenable to such techniques
as liveness properties reason about progress and concern the
succession of events in dynamic systems. They cannot be
verified on a static snapshot of the system.

A dynamic network, in which the state changes, can be
modeled as a state machine and, conceptually, existing static
verification approaches [35] could be extended to reason about
properties of the states and transitions of this machine (§3).
However, this naive approach results in state explosion as the
network size increases and is therefore impractical (§3, §4).

In this paper, we argue that the goal of verifying liveness
properties is achievable using a top-down function-oriented
strategy that rethinks network abstractions with the efficiency

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 257

of verification in mind. To realize this vision: (a) we pro-
vide network programmers with a simple, familiar abstrac-
tion of one big switch to express their intent. This abstrac-
tion enforces the logical separation of different network func-
tions (§2). (b) We then model the program as a compact
“packet-less” data structure that, unlike the common approach
of modeling the forwarding behavior for classes of pack-
ets [33,34,42,43], abstracts away the explicit notion of packets
and focuses instead on the entities responsible for implement-
ing functions: packet handling rules. (c) We build and evaluate
a prototype of our system.

Abstraction: We provide a unified abstraction of one big
switch for both control and data planes that conceptually han-
dles all packets. This abstraction closely resembles the sim-
ple, familiar data plane abstraction of one big switch directly
connecting all hosts [36, 49]. In contrast to the data plane
one-big-switch, our abstraction does not require a separate
control plane to program it. To reduce verification time, we
enforce a functional decomposition by requiring the user to
implement each function using a separate logical flow table.

Modeling and verification: For verifying properties, sim-
ilar to prior work [28], we focus exclusively on network be-
haviors visible to users. This enables us to model the system
behavior using a compact “packet-less” data structure that ab-
stracts away any details invisible to users, such as the hop-by-
hop journey of the packet inside the network [33,34,42,43,52]
or even the explicit notion of packets or classes of packets (§3).
The packet-less structure models changes in the forwarding
behavior as Boolean transitions. We demonstrate the verifica-
tion efficiency of the packet-less model experimentally (§4),
e.g., for a UDP flood mitigation function, within a 1,000sec.
time-bound, it enables verifying a key liveness property (host
A is eventually blocked) for networks that are 3.5⇥ larger
than those verifiable with the aforementioned naive approach
(extending static verification to deal with network states and
dynamic transitions).

Implementation and evaluation: We develop a prototype
of our design that exposes two interfaces (to express functions
on the one-big-switch abstraction and specify verification
properties) and a P4 compiler that converts such functions to
programs executable on today’s programmable devices. Our
evaluations show the expressiveness of our interfaces, their
low overhead, and the efficiency of our verification design,
e.g., for a 100-host network, the packet-less model verifies
key liveness properties of a UDP flood mitigation function
8⇥ faster than a packet-based baseline—a gap that increases
with the network scale (§4).

2 A Unified Switch Abstraction

To simplify programming and relieve network programmers
of the burden of writing distributed, multi-tier programs, we
provide the abstraction of a single, centralized switch that con-
ceptually handles every packet. This approach for simplifying

programming by having a single unified abstraction for both
the control plane and data plane is inspired by Maple [59] and
deployed in Flowlog [46]. In contrast to Maple that allows
programmers to use standard programming languages and
Flowlog’s SQL-like language, we start with the most basic
and familiar data plane abstraction in networks: one switch
that directly connects all hosts. We then augment this abstrac-
tion to make it programmable. Similar to Maple and Flowlog,
we proactively compile the programs written on our abstrac-
tion to control and data plane programs executable in today’s
networks (§4). We describe our abstraction, its distinction
from the common one-big-switch abstraction, and how sev-
eral canonical network functions can be programmed on it, in
turn.

One-big-switch: A common data plane abstraction in net-
working is that of one logical switch with multiple flow tables,
each containing a set of rules, that directly connects all users’
hosts together [5, 32, 36, 44]. A rule generally includes: (a) a
match field to match against packet headers and ingress ports,
(b) priority to determine the matching precedence of rules,
(c) counters that are updated when packets are matched, (d)
timers that show the time that the rule will be expired and
removed from the switch, and (e) actions that are executed
when a packet matches the match field of an unexpired rule
that has the highest priority among all unexpired rules. These
actions could result in changes in the packet, dropping it,
or forwarding it. We use R.match, R.priority, R.counter,
R.timer, and R.action to denote the match, priority, counter,
timer, and action of rule R.

Our goal is to provide a similar abstraction to this familiar
abstraction while making it programmable and amenable to
fast verification. In particular, rather than a static, stateless
switch, the programmer should be able to implement dynamic
functions whose behaviors change over time based on traf-
fic. Plus, she should be able to focus solely on the high-level
functionality that she wishes her switch to provide (e.g., the
firewall policies), and the provider of the abstraction is respon-
sible for handling the low-level, distributed implementation
of the functionality including reachability (e.g., ensuring that
all required packets are correctly forwarded through the fire-
wall). To further assist the user in developing her desired
functions, an ideal framework should also provide modular
programming and separate the functionality of a program
into independent modules. Towards these goals, we make the
following alteration in the one-big-switch abstraction [5, 36]:

Add/delete actions: In addition to the standard SDN ac-
tions (forward, drop, etc.), we allow the execution of a rule
to add or remove rules from the switch. As an example, to
program a stateful firewall that allows an external host E to
talk to an internal host I only after I sends E a request, the
switch needs a rule that, upon receiving a request from I to E,
alters its state to allow E to I communication.

Actions add(R) and delete(R) show that the execution
of the rule results in, respectively, adding and deleting rule

258 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rule active prio match action
R0 true 100 src=I, dst=E delete(R0), delete(R1), delete(R3), send(IDPS)

R1 true 100 src=E, dst=I delete(R0), delete(R1), delete(R4), drop()

R2 true 50 src=I, dst=E send(IDPS)

R3 true 50 src=E, dst=I drop()

R4 true 50 src=E, dst=I send(IDPS)

R5 true 10 * send(IDPS)

rule active prio match action

R0 false 100 src=I drop()

R1 false 50 src=I, dst=D drop(), add(R0)

R2 false 50 src=I, dst=F send(), add(R1)

R3 true 40 dst=I, port=2222 send(), add(R2)

R4 true 10 * send()

Firewall IDPS

R
outer

Figure 1: One-big-switch implements firewall and IDPS.

R. To each rule R, we add a boolean variable R.active to
show if the rule is currently active on the switch, i.e., pack-
ets are matched against it. As an example, the initial state
R0.active=true; R1.active=false; R0.action=add(R1)
shows that, unlike R0, rule R1 is not initially active and will
be activated as a result of R0’s execution.

Actionable measurements: For a rule Ri, we allow users
to define match fields as predicates not just on packet headers
(e.g., src=A) but also as conditions in the forms of li c j < ui
on counters, where c j is the jth counter and li and ui are con-
stants. This condition expresses that for the rule to match
a packet, the value of counter c j should be in the [li,ui) in-
terval.1 We assume that counters are bounded in the range
[0,m). Counters enable the network programmer to easily
write critical network functions that depend on traffic statis-
tics such as security applications that detect SYN flood, port
scanning, DNS amplification, etc. [7, 16, 23] and campus net-
work monitors [35] that block users once their usage exceeds
the quota specified by the campus policy. Whenever a rule
with a counter is executed on a packet, the counter value is in-
cremented by one. We allow multiple rules to share a counter.

Other optimizations: To improve programmability and
verification speed, we also perform the following optimiza-
tions: (a) Functional decomposition: the user is provided
separate tables for each of her network functions, e.g., one
table for her firewall, one table for her load balancer, etc. If a
packet matching a rule R in function F1 needs to be sent to an-
other function F2, e.g., an IDPS rule needs to send a packet to
the traffic scrubber, this is expressed as R.action=send(F2)
in table F1. (b) Declarative routing: Our abstraction provides
routing and forwarding as a service, that we call the router,
to its users. This liberates the user from computing paths and
updating them after infrastructure changes, such as changes in
policy, topology, and addressing. The user only declares the
goal that a packet should reach a destination and delegates the
task of figuring out how this is done to the provider. Action
rules send(A) and send() simply express the intent of the user
to forward a matching packet to the endpoint with ID A and
to the packet’s destination, respectively. In our prototype, for

1If the rule only increases the value of c j when executed without defining
a condition on c j , we assume li=0, and ui= m, where m is the maximum
value supported for counters.

implementing our declarative routing service, we deploy a
basic shortest path forwarding function [1]. (c) Symbolic rule
representation: the original one-big-switch rules can express a
restricted subset of predicates on explicit packet headers, e.g.,
src-IP=10.0.0.1 ^ dst-IP=10.0.0.2. Declarative rout-
ing enables us to provide a higher-level abstraction to express
any general predicate on sets of endpoint identities and header
fields, e.g., the programmer can declare a forwarding policy
for packets sent to or from a set of hosts called T via a sin-
gle rule R: R.match=(src=T_dst=T), R.action=send(),
without managing low-level details such as the physical loca-
tions and IP addresses of T ’s hosts.

The changes above turn the data plane one-big-switch ab-
straction into a unified abstraction that can be efficiently veri-
fied: add/delete actions and actionable measurements make
the abstraction programmable, and other optimizations ac-
celerate the verification process by reducing the program
size (§4). To further assist with efficient verification, our
abstraction is designed to have less expressive power than
Turing-complete control plane programming languages [46]
such as Floodlight [4] and Pyretic [44]. We find experimen-
tally that despite being computationally universal, in practice,
control planes perform only a limited set of operations, e.g.,
adding and deleting rules based on traffic patterns. Our one-
big-switch abstraction is designed to be capable of performing
similar computations and is therefore expressive enough to
program a wide range of network functions. Table 1 lists the
functions of a few common control planes and recent network
abstractions that we re-wrote on top of our abstraction (im-
plementations in §8). To support the functions that cannot be
expressed on top of our abstraction, such as content-based
security policies, our framework allows the use of external
libraries in conjunction with our abstraction. However, we
can only verify the programs expressed on our abstraction.

Examples. Figure 1 shows an illustrative example where
the user deploys two tables to implement a chain of two
canonical functions: a stateful firewall followed by an IDPS.
The first table implements a stateful firewall at the periphery of
an enterprise that allows endpoint E (e.g., as an external host)
to talk to I (e.g., as an internal host) only if I sends a request
to E first. Initially, the table has high priority rules that “watch
for” traffic between I and E (R0 and R1). If traffic from E to I

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 259

rule active prior match action

R0 true 100 src=I, 0 ≤ c0 < v1 send()
R1 true 100 dst=I, 0 ≤ c0 < v1 send()
R2 true 100 src=I, v1 ≤ c0 < v2 send(rate-limiter)
R3 true 100 dst=I, v1 ≤ c0 < v2 send(rate-limiter)
R4 true 100 src=I, v2 ≤ c0 < m drop()
R5 true 100 dst=I, v2 ≤ c0 < m drop()

Monitor

R
outer

Figure 2: One-big-switch implements a monitor.

is observed first, the execution of rule R1 drops the traffic and
changes the state to block E from reaching I. Receiving traffic
from I to E first, however, triggers the execution of R0 which
in turn allows bidirectional traffic between I and E to pass
through the firewall. Packets not discarded by the firewall are
always sent to the next function, the IDPS explained below,
for further monitoring. Note that when defining rules in the
one-big-switch abstraction, the match fields of the rules must
be defined in a way that at least one rule matches each received
packet.

The second table implements an IDPS that detects and
blocks Trojans. The IDPS determines if the internal host I
is infected and needs to be blocked based on a recognizable
fingerprint of a backdoor application [16] with the following
sequence of operations: (i) I receives a connection on port
2222, (ii) I connects to an FTP server F , and (iii) I tries to
connect to the database server D.

Initially, the table contains two active rules: R3 that matches
traffic destined to I on port 2222, and a lower priority rule R4
that matches all other traffic. Both rules forward the traffic
to its destination. The execution of R3, however, corresponds
with the (i) operation above. Once triggered, it activates R2
that is executed once I tries to reach F (operation (ii)). R2’s
execution, in turn, activates R1, and once I tries to send traffic
to D (operation (iii)), it gets blocked (R1 activates R0). Once
the traffic goes through this pipeline of tables, it is handed to
the router to be delivered to its destination.

Figure 2 shows another example for an application that im-
plements a simple campus policy in which an inside-campus
host I is allowed to send and receive data before hitting a
utilization cap v1. Once its usage exceeds v1, but before it
reaches v2, its traffic is routed through a rate limiter. After its
usage passes v2, its access is blocked.2 A survey of campus
network policies shows that universities commonly deploy
such usage-based rate-limiting [35]. While for simplicity, we
only provide examples of linear chaining of functions in this
section (e.g., IDPS after firewall), our abstraction is general
enough to express arbitrary dependencies between functions.
An example is provided in §8.

2In practice, such policies are usually enforced periodically, e.g., the rules
(along with their counters set to 0) are re-installed daily.

3 Function Verification

A standard approach for verifying liveness properties of dy-
namic systems is modeling the behavior of the system as a
transition system and expressing its desired properties using
temporal logics. The complexity and scalability of this ap-
proach depend on the size of the state machine. In this section,
we show how we can model stateful dynamic network func-
tions as compact, Boolean “packet-less” transition systems
that can be verified efficiently. In §4, we show experimentally
that this approach significantly reduces the average verifi-
cation time for canonical applications compared to a naive
packet-based baseline.

3.1 Network as a Transition System
We can model the network as a transition system, an analyti-
cal framework for reasoning about the behavior of dynamic
systems where nodes represent the states of the system (each
state corresponds to a valuation of system variables) and edges
represent state transitions [8]. Each transition system has a
set of initial states as well as a labeling function that maps
each node to a set of properties that hold in that state. More
formally, a transition system TS is a tuple (S, Act, I, AP, L):
• S is a set of states,
• Act is a set of actions,
• ! ✓ S⇥Act⇥S is a transition relation,
• I ✓ S is a set of initial states,
• AP is a set of atomic propositions, and
• L : S ! 2AP is a labeling function.
For convenience, we write s !a s0 instead of (s, a, s0).

Intuitively, a transition system starts in some initial state s0 2 I
and evolves according to the transition relation !. That is,
if s is the current state, then a transition s !a s0 is selected
nondeterministically and taken, i.e., the action a is performed,
and the system evolves from state s into state s0.

In networks, the state of the network at each point is its
forwarding state (e.g., rules and counters), and transitions are
the events that change the state, e.g., policy updates. We next
show the properties that can be expressed on these transition
systems, explain what makes liveness verification hard, and
demonstrate how we can model the network as a compact
“packet-less” transition system.

Atomic propositions: Atomic propositions are Boolean-
valued propositions that express simple known facts about
the state of the system. We define these propositions as (h,a)
pairs where h and a are, respectively, an equivalence class of
packets, and a list of actions (e.g., send(I)). For the network
transition system T S, an atomic proposition (h,a) holds in a
state s 2 S if action a applies to all the packets in h.

Labeling function: A labeling function L relates a set
L(s) 2 2AP of atomic propositions to any state s 2 S.3 In the
network transition system T S, L maps each state to the set

3Recall that 2AP denotes the power set of atomic propositions.

260 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

of atomic propositions that hold in that state. That is, (h,a)
exists in L(s) if the list of actions a is applied to all the packets
in h in state s.

Properties: An execution of a program can be shown as an
infinite sequence of states: s0,s1..., where each state si results
from executing a single action in state si�1.4 A program’s
behavior is the set of all such sequences. A property is also
defined as a set of such sequences [6]. A property holds in
a program if the set of sequences defined by the program is
contained in the property [6]. A partial execution is a finite
sequence of program states.

Temporal logic to express properties: Temporal logic is
an extension of ordinary logic that facilitates expressing prop-
erties via adding assertions about time. Here, we adopt linear
temporal logic (LTL) [19], which can express various liveness
and safety properties [37, 47]. Temporal logic assertions are
built up from atomic propositions using the ordinary logi-
cal operations ^,_, and ¬ and some temporal operators—if
P and S are atomic propositions: (1) GP implies “now and
forever” P holds, (2) FP implies “now or sometime in the
future” P holds,5 (3) P ! S shows logical implication and
implies that if P is true now then S will always be true, (4)
PUS implies P remains true “until” S becomes true, and (5) OP
implies P holds in the “next” state. Using the above temporal
operators, we can express various properties, e.g., F((src=E
^ dst=I), send(I)) [47] asserts that eventually E-to-I packets
are delivered, i.e., E can eventually reach I.

3.2 Liveness vs. Safety
A key categorization of properties in distributed systems is
into safety and liveness. The categorization is important as
the two groups are proved using different techniques [6]. In-
formally, a safety property stipulates that some “bad thing”
(deadlocks, two processes executing in critical sections si-
multaneously, etc.) never happens and liveness guarantees
that “something good” (termination, starvation freedom, guar-
anteed service, etc.) eventually happens [47]. That is, for a
property P to be a safety property, if P does not hold for an
execution, then at some point, some irremediable “bad thing”
must happen. Most of the properties verified in networks to-
day are safety: if a property—such as reachability invariants
(E is always reachable from I) [33, 34, 42, 43], waypoint (a
certain class of traffic always traverses an intrusion detec-
tion system) [41, 58], congestion-freedom [27, 29, 38], and
loop-freedom [33, 34, 42, 43]—is violated, then there is an
identifiable point—such as a change in the latest snapshot of
the network— at which the “bad thing” happens [6].

A partial execution g is live for a property P if and only
if there is a sequence of states b such that P holds in gb. A

4Terminating executions are modeled as sequences where the last state
reached by the terminating trace repeats infinitely.

5Note that F is the dual of G, i.e., FP is equivalent to ¬G¬P, where P is an
atomic proposition [47].

property for which all partial executions are live is a live-
ness property. In contrast to safety, for liveness properties,
no partial execution is irremediable—it is always possible
for the required “good thing” to happen in the future [6].
This makes detecting liveness violations challenging as it fun-
damentally requires an exhaustive search of the entire state
space of the network. In the next section, we discuss our ap-
proach to overcoming this challenge by modeling networks
with compact transition systems. Some examples of liveness
properties in networks are (a) the intrusion detection system
eventually detects all infected hosts, (b) all hosts eventually
become reachable, e.g., after routing convergence, and (c)
showing a recognizable fingerprint of a backdoor application
leads-to the host being blocked. More generally, “event A
leads-to event B” and “event B eventually happens” are two
classes of liveness properties [47] as it is always possible for
“something good” (i.e., event B) to happen. An example of a
property that includes liveness is total correctness which is
composed of partial correctness (the program never generates
an incorrect output; a safety property) and termination (the
program generates an output; a liveness property) [6].

3.3 Packet-less Model
Feasibility of model checking is tied inherently to handling
state explosion [19]. To mitigate this problem, we try to pro-
vide a compact “packet-less” structure that models only the
entities that perform the functions in the network: packet han-
dling rules. Plus, we model rules in the most abstract form:
as Boolean variables, abstracting away all of the attributes of
rules, such as their match fields, actions, and priorities. This
is in contrast to pervasive network verification techniques that
model the network behavior in terms of packets and equiva-
lence classes of packets (ECs) [34, 35, 43].

Boolean variables and formulas provide a more compact
way to represent the state space of a transition system. State-
of-the-art model checkers like NuSMV [18] use symbolic
techniques, such as Binary Decision Diagrams (BDDs), for
efficiently exploring transition systems that have a Boolean
representation. Such representations enable model checkers
to explore extremely large state spaces efficiently [15]. We
next explain how we can encode the behavior of dynamic
network functions as packet-less models. We then show in
§4 that this approach of packet-less modeling results in a
significant reduction in the verification time of canonical
network functions compared to a packet-based approach.

Compact, packet-less models: We initially model the net-
work as a transition system T S with a single Boolean variable
corresponding to each rule. This variable is true if the rule
is active in the network and false otherwise. As a starting
point, we abstract away counters, assuming that rules do not
depend on them. (We will later refine this model to incorpo-
rate counter semantics.) Each node in this structure shows
one state of the network defined by a valuation of Boolean

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 261

!" = $%&'() ≤ " ≤ +
!, = -./(0 ≤ , ≤ 1

!, = -./() ≤ , ≤ 1

!" = -./(,) ≤ " ≤ 3

!" = $%&'() ≤ " ≤ 4
!, = -./(+ ≤ , ≤ 1

!) = $%&'(
!, = -./(4 ≤ , ≤ 1

Initial state

Initial state

Figure 3: Packet-less models of the (a) IDPS and (b) monitor.

rule variables. S is the set of all these states. A rule can be
executed in a state if, for at least one packet that it matches,
it is the highest priority rule with value=true in that state.
Actions are the execution of rules that update the forwarding
state by adding or deleting rules, and transitions show how
the state evolves as a result of these actions. If in a network
state s 2 S, rule Ri can be executed and its execution adds or
deletes rules, then there is a transition s !Ri s0,s0 2 S, where
for each added rule R j, R j=true in s0 and for each deleted
rule Rk, Rk=false in s0. In the initial state, the value of each
Ri is equal to the initial value of Ri.active in the original
program. Figure 3 shows the packet-less models for the IDPS
and the campus monitor functions in Figures 1 and 2 (not
including labeling functions).

Despite being more efficient, not explicitly modeling pack-
ets causes some key challenges: (1) Abstracting away the
notion of packets makes it challenging to incorporate the
semantics of traffic statistics such as counters. (2) As §3.1
explains, properties are defined on packets and whether a prop-
erty holds in a network state depends on the actions of the
highest priority rule that matches the packet. Thus, it is chal-
lenging to verify properties on a structure that abstracts away
any explicit notion of packets, headers, priorities, etc. For the
IDPS function in Figure 1, for example, the packet-less model
has two rules in the initial state that can match packets sent
to I with port number 2222, as Figure 3 (a) shows. With each
rule modeled as a Boolean variable, it is not possible to de-
termine which matching rule handles a packet (and therefore
verify properties). We address these challenges next.

3.3.1 Boolean Formulas of Counters

The first challenge of the Boolean packet-less modeling is
preserving the semantics of stateful programs with traffic
counters. Recall that in packet-less models, we initially ab-
stracted away counters. We next show how to refine these
models to incorporate semantics of counters.

Refining states: To model counters, we observe that if the
only variable that changes across a set of network states is
a counter value and the value of this counter does not pass
counter conditions, then the forwarding behavior remains the
same in all those states. In the monitor function, the network
behavior is identical for all counter values between 0 and v1.
This allows us to track counter predicates, Boolean-valued
functions on counters, instead of actual counter values. In the
monitor function, we can define the following three predicates:

(0 c0 < v1), (v1 c0 < v2), and (v2 c0 <m). In the initial
state, only the first predicate, (0 c0 < v1), is true.

The fact that the forwarding behavior is determined not
by exact counter values but by counters passing thresholds
makes counters amenable to predicate abstraction, a powerful
technique to mitigate the challenges of verifying programs
with large base types such as integers [19]. This technique
reduces the size of the model by tracking only predicates on
data and eliminating invisible data variables.

Concretely, counter conditions partition an interval into
subintervals that may have distinct forwarding behaviors. Let
Ri be a rule that depends on the jth counter, c j, i.e., it is active
if c j’s value is in the [li,ui) range, and Pj = order([i(li [ui)),
i.e., an ordered list (in non-decreasing order) of all lower and
upper bounds of all rules that depend on c j. Pj,k, l j,k, and u j,k
denote, respectively, the kth subinterval of counter c j, its lower
bound, and its upper bound. In the monitor program, P0,0 =
[0,v1) is the first subinterval of the first counter, l0,0 = 0, and
u0,0 = v1. When the counter value is in this subinterval, rule
R0 can handle packets as its counter conditions, (l0 c0 < u0),
are satisfied, i.e., (l0 l0,0)^ (u0,0 u0) where l0 = 0 and
u0 = v1. R2, on the other hand, cannot handle packets because
its counter conditions are not satisfied in this subinterval, i.e.,
(l2 6 l0,0)^ (u0,0 6 u2) where l2 = v1 and u2 = v2.

We refine T S by adding a Boolean variable R0
i for every

rule Ri. Our goal is to set the value of this variable to true in
a state s if the counter conditions of Ri are satisfied in s and
to false otherwise. For any rule Rk that does not depend on
counters, R0

k=true.6 The numbers in Pj are the only places
where R0

i variables of the rules that depend on c j can change.
In the monitor program, P0 = [0,v1,v2,m] lists the only points
in the [0,m) range where the condition of a rule that depends
on counter c0 such as R0 can transition from true to false

and vice versa.
For each counter c j in a state in the packet-less model,

we partition the state into |Pj|� 1 states, where |Pj| is the
number of points in Pj, e.g., P0=4 in the monitor example.
Each of these |Pj|�1 states corresponds to one subinterval.
Suppose that Ri is a rule that depends on counter c j, i.e., Ri
can handle packets when the value of the counter satisfies
its counter conditions: li c j < ui. The value of R0

i in each
refined state should show whether the counter conditions of
rule Ri are satisfied in the corresponding subinterval Pj,k :
R0

i = ((li l j,k)^ (u j,k ui)).
In any given state s 2 S and for a subinterval of Pj,k, the net-

work behavior is determined by the rules that (a) are active in
that state (i.e., Ri=true) and (b) either do not depend on coun-
ters or their counter conditions are satisfied in that subinterval
(i.e., R0

i=true), e.g., in the monitor example’s initial state, R0
and R1 are active (i.e., R0=R1=true) and their counter con-
ditions are satisfied in the first subinterval P0,0 = [0,v1) (i.e.,

6Note that it is possible to avoid defining these variables for the rules that
do not depend on counters. We define these variables for all rules here for
ease of exposition.

262 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

!"# = !%# = !& = '()*, " ≤ & ≤ -
!.# = !/# = !0# = !-# = 1234*

Initial state
!.# = !/# = !& = '()*, " ≤ & ≤ -
!"# = !%# = !0# = !-# = 1234*

!0# = !-# = !& = '()*, " ≤ & ≤ -
!"# = !%# = !.# = !/# = 1234*

Figure 4: The refined structure for the monitor function.

R0
0=R0

1=true).
In summary, the set of variables in the packet-less model

T S includes a pair of Boolean variables Ri and R0
i for each

rule. The values of these variables at any point define the state
of the packet-less model at that point. In the initial state, for
every rule Ri, the value of Ri is equal to Ri.true in the original
program. In the initial state, R0

i=true iff Ri either does not
depend on any counters or if it depends on counter c j and its
counter conditions are satisfied in the first subinterval of c j,
Pj,0, i.e., ((li l j,0)^ (u j,0 ui)).

In the refined model, a rule Ri can be executed in a state
if (a) for at least one packet that Ri matches, it is the highest
priority rule, (b) Ri is active in that state (i.e., Ri=true), and
(c) Ri either does not depend on any counters or its counter
conditions are satisfied in that subinterval (i.e., R0

i=true).

Transitions in the refined model: Let sk and sk+1 be, re-
spectively, the kth and (k+1)th refined state if state s is refined
for counter c j, i.e., the states representing the Boolean formu-
las for subintervals k and k+1 of Pj. We add a transition from
state sk to state sk+1 if there is at least one rule Ri that depends
on c j and can be executed in sk. The reason is that c j increases
monotonically so if a counter-dependent rule can be executed
in sk, it can result in c j transitioning to the next subinterval
(corresponding to state sk+1). For each transition s !a s0 in
the original packet-less model before refinement, where a is
the execution of a rule Ri that adds or deletes rules, there is a
transition sk !a s0k if Ri can be executed in sk. As before, for
each added rule R j that Ri adds, R j=true in s0k and for each
rule Rk that Ri deletes, Rk=false in s0k. Figure 4 shows the
Boolean packet-less states and the transitions for the monitor
function in Figure 2 (see Figure 3 (b) for its corresponding
pre-refinement packet-less model). There is a transition from
the initial partitioned state (in which R0

0 = R0
1=true) to a state

in which R0
0 = R0

1=false, reflecting the fact that the network
state evolves from an initial state that satisfies the counter con-
ditions of these rules to one where the counter conditions of
these rules are no longer satisfied. If the program has multiple
counters, the state and transition refinements are performed
sequentially for each counter.

3.3.2 Boolean Formulas of Properties

We explained earlier how we could express atomic proposi-
tions in terms of packets and the desired actions on them. Prop-
erties are built out of atomic propositions, and in a transition

system such as the packet-based model in prior work [35], the
atomic proposition (h,a) holds for a state iff the list of actions
a is applied to all the packets in h in that state. The second
challenge of packet-less modeling is evaluating a proposition
on Boolean packet-less models. In this part, we explain how
an (h,a) proposition can be expressed as a Boolean formula
on rules exploiting a priori known rule priorities.

We say that a rule Ri can be applied if (a) Ri is active, i.e.,
Ri=true and (b) Ri either does not depend on any counters or
its counter conditions are satisfied, i.e., R0

i=true. For a rule
to be executed, in addition to satisfying the conditions above,
for at least one packet that it matches, it should be the highest
priority rule.

Let W0,n = [R0,R1, ...,Rn] and W 0
0,n = [R0

0,R
0
1, ...,R

0
n] be,

respectively, the list of rules Ri and the list of variables
R0

i, sorted in non-increasing order of the priorities of
rules, i.e., Ri.priority � R j.priority, R0

i.priority �
R0

j.priority if i < j. Our goal is to express whether a propo-
sition holds in a state as a Boolean formula on this list. We
achieve this with a recursive function: Let K((h,a),W0,n,W 0

0,n)
be a function that is true if W0,n and W 0

0,n satisfy the propo-
sition (h,a) and false otherwise. For the two special cases,
where (1) h is empty and (2) h is not empty and the list of rules
is empty, we assume that K((h,a),W0,n,W 0

0,n) evaluates to, re-
spectively, true and false because any condition holds for
a non-existing packet (item (1) above, h =?) and an empty
set of rules does not satisfy any conditions for packets (item
(2) above, h 6=? and the list of rules=[]). In other conditions,
we have the following cases:

Case 1: If the highest priority rule R0 matches some
packets in h, i.e., if (h\R0.pkts) 6= ?, where Ri.pkts de-
notes the set of packets that Ri matches, and its action in-
cludes the actions in the proposition, i.e., a ⇢ R0.action,
then for the proposition to hold, one of these two conditions
should hold (a) either R0 can be applied (R0 ^R0

0) and for
all the packets of h that do not match R0, the proposition
should hold for the next, lower-priority matching rules, i.e.,
(R0 ^R0

0)^ (K((h�R0.pkts,a),W1,n,W 0
1,n)), or (b) R0 can-

not be applied (¬(R0 ^R0
0), R0 either is not installed in the

network or its counter conditions are not satisfied), but in
this case, for all the packets of h, the proposition should hold
for the next, lower-priority matching rules, i.e., ¬(R0 ^R0

0)^
(K((h,a),W1,n,W 0

1,n)). In other words, K((h,a),W0,n,W 0
0,n) =

((R0 ^ R0
0) ^ (K((h � R0.pkts,a),W1,n,W 0

1,n))) _ (¬(R0 ^
R0

0)^ (K((h,a),W1,n,W 0
1,n))).

Case 2: If the highest priority rule R0 matches some pack-
ets in h, i.e., if (h\R0.pkts) 6= ?, and its action does not
include the actions in the proposition, then for the propo-
sition to hold, it should not be possible to apply R0, i.e.,
¬(R0 ^R0

0). Otherwise, it matches the packets but does not
apply the intended actions on them. Plus, for all the pack-
ets of h, the proposition should hold for the next, lower-
priority matching rules, i.e., K((h,a),W0,n,W 0

0,n) = ¬(R0 ^

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 263

R0
0)^ (K((h,a),W1,n,W 0

1,n)).
Case 3: If the highest priority rule R0 does not match

any packets in h, then irrespective of whether R0 can be
applied or not, for all the packets of h, the proposition
should hold for the next, lower-priority matching rules, i.e.,
K((h,a),W0,n,W 0

0,n) = K((h,a),W1,n,W 0
1,n).

Applied recursively to the ordered list (according to prior-
ity) of all rules in the network, K((h,a),W0,n,W 0

0,n) expresses
the proposition (h,a) as a Boolean formula on Ri and Ri’ vari-
ables. As an example, in the IDPS function of Figure 1, the
proposition ((src=I,dst=E),send()) is translated to

K(((src=I,dst=E),send()),W0,4,W 0
0,4) =

¬(R0 ^R0
0)^ (K(((src=I,dst=E),send()),W1,4,W 0

1,4)) =
¬(R0 ^R0

0)^K(((src=I,dst=E),send()),W2,4,W 0
2,4) =

¬(R0 ^R0
0)^K(((src=I,dst=E),send()),W3,4,W 0

3,4) =
¬(R0 ^R0

0)^K(((src=I,dst=E),send()),W4,4,W 0
4,4) =

¬(R0 ^R0
0)^

(((R4 ^R0
4)^K((?,send()), [])) _

(¬(R4 ^R0
4)^K(((src=I,dst=E),send()), []))) =

¬(R0 ^R0
0)^ (R4 ^R0

4).

This Boolean formula results from applying the rules spec-
ified in cases (2), (3), (3), (3), (1), and the first two spe-
cial cases, respectively. It has different truth values in dif-
ferent states in Figure 4 depending on the truth values of
rules in those states, e.g., it is true in the initial state S0
where R0=false and R4=true, meaning that the assertion
((src=I,dst=E),send()) holds (I may talk to E in this state),
but is false in the final state (I is blocked), where R0=true
and R4=true. Note that R0

i variables are always true in this
example as the rules do not depend on counters.

In the network transition system T S, labeling function
L maps each state to the set of atomic propositions that
hold in that state. That is, (h,a) exists in L(s) if the list of
actions a is applied to all the packets in h in state s, i.e.,
K((h,a),W0,n,W 0

0,n)=true where W0,n and W 0
0,n are, respec-

tively, the list of rules Ri and the list of variables R0
i (sorted in

non-increasing order of rule priorities) in s.

4 Implementation and Evaluation

To evaluate the performance of our design, we build a pro-
totype that enables network operators to program and verify
their functions and a compiler that converts these functions
to programs executable on programmable switching ASICs.
After a brief overview of our prototype, we show that our
network abstraction and specification language are expres-
sive and impose only minimal overhead. We also show that
compared to a packet-based baseline, the packet-less model’s
verification of different properties is faster and more scalable,
e.g., for a network with 100 hosts, the packet-less model re-
sults in 8⇥ speedup in the verification of liveness properties

of a UDP flood mitigation function compared to the packet-
based model.

4.1 Implementation
Interfaces: Our system exposes two interfaces: a one-big-
switch interface that enables a network operator to program
her functions on our abstraction (§2) and a specification in-
terface that allows her to express her desired properties (§3).
Our generator then automatically builds the packet-less model
and the Boolean formula representing the specification as ex-
plained in §3 and interacts with NuSMV, a state-of-the-art
model checker [18], to verify specification properties.

Compiling the abstraction to P4 programs: P4 [14] is
a language for expressing the packet processing of pro-
grammable data planes. Along with the programmable data
plane, the control plane is responsible for populating the tables
defined by the P4 program. We build a compiler to compile
a one-big-switch program using our abstraction to a P4_16
program for the P4 behavioral model [3], an open-source pro-
grammable software switch. Along with the software switch,
we develop a control plane which adds and deletes table rules.
We describe some of the salient features of the compilation:

(a) Functional decomposition: We map each table in the
abstraction to a P4 table, whose match fields and actions are
constructed using the rules in the table. Network function
traversal policies are implemented using P4 control flow con-
structs, e.g., to traverse a firewall table fw conditionally:

if (meta.visit_fw) == 1)

fw.apply();

where meta.visit_fw is a metadata variable used by the ta-
bles before the firewall table to ensure the packet goes through
the firewall table.

(b) Actionable measurement: We use P4’s registers to
support incrementing and matching on counters shared across
multiple rules. If a table in the abstraction uses counters, we
create a separate P4 table which is responsible for updat-
ing the shared counters and transferring the counter state to
metadata such that the function table can use the value for
matching. This helps us confine register accesses to a single
table. Thus, packet processing can happen at the line rate [54].

(c) Add/delete actions: Currently, P4 data planes do not
support add/delete actions, i.e., rule actions that add or delete
other table rules, due to hardware limitations of existing
platforms. We support this functionality by cloning the
packet [55] to the control plane, acting similar to the Pack-
etIn functionality in OpenFlow [2]. When a rule in the pro-
gram has an add/delete action, our switch program clones
the packet in the data plane and sends it to the switch-local

264 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Function source Function One-big-switch Packets calling P4 LoC Compilation
LoC controller [%] time[ms]

Pyretic [44]/Kinetic [35]

Simple counter 1 0 144 1.8
Port knocking 3 6⇥10�3 133 1.8
Simple firewall 2 0 128 1.6
IP rewrite 2 0 134 1.8
Simple rate limiter 3 0 141 2.1

Floodlight [4] Firewall/ACL 2 0 132 1.7
Chimera [13] Phishing/Spam detection 3 6⇥10�3 151 2.3

FAST [45]

Simple stateful firewall 3 0.3 133 2.1
FTP monitor 2 0 135 2.1
Heavy-hitter detection 2 0 148 2.0
Super spreader detection 2 0 148 2.0
Sampling based on flowsize 6 0 189 2.5

Bohatei [23]
Elephant flow detection 3 0 182 2.4
DNS amplification mitigation 3 7⇥10�3 135 1.9
UDP flood mitigation 2 0 148 1.8

Table 1: Applications written on one-big-switch.

control plane; the control plane (which we also generate) then
adds/deletes table rules as decided by the add/delete actions in
the program. This approach has the overhead of punting some
packets (specifically, first packets in a connection matching
specific rules) to the local switch CPU—this is a cost we pay
for lack of data plane support for add/delete actions.

4.2 Evaluation
Expressiveness: Despite its simplicity, our one-big-switch
abstraction enables developers to express a broad range of
applications and network functions. Table 1 shows a list of
functions that we have developed in our framework. Full
descriptions of these programs are provided in §8. Network
policies can be succinctly expressed on our one-big-switch
abstraction in only a few lines of code (column 3 in Table
1), e.g., a simple stateful firewall policy that allows only the
traffic whose connection was initiated by a host in a given
department can be expressed in 3 lines of code on the one-
big-switch abstraction. The compiled P4 code of the same
policy is expressed in 133 lines of code (comprising of 100
lines of boilerplate code for headers and parsers) and ⇠50
lines of code for the P4 control plane for cloning the packets
at the data plane and adding rules from the control plane.
Various specification properties, including the most common
specification patterns in practice [21], can also be specified in
the temporal logic presented in §3.

Limited overhead: Add/delete actions of our abstraction
are not directly supported in the switching ASIC today. Our
P4 compiler implements these by involving the controller
whenever a rule has such actions. To measure the overhead
of involving the controller, we deploy the functions listed in
Table 1 and replay a packet trace of a university datacenter
[12], with over 102K packets and 1,791 IP addresses and
measure the frequency of calling the controller. This overhead
is modest for all functions, i.e., 0-0.3% (column 4, Table 1).

Verification time: We test the efficiency of bounded-time

verification of packet-less and packet-based models at scale
to answer questions such as, what functions and properties
are verifiable with each approach? How does the verification
time scale with respect to the network (and hence the model)
size? How does it scale with respect to the property size? To
do so, for the functions in Table 1 with per-host policies (e.g.,
the heavy-hitter detector, port knocking, rate limiter, phish-
ing/spam detector, and UDP flood mitigation function), we
define one policy for each host in the network. The heavy
hitter detector, for example, deploys a per-source IP counter
that is incremented for every new SYN packet and starts drop-
ping packets when the counter exceeds a threshold (Table 4).
For the functions that define policies between communicating
pairs of hosts or on flows, e.g., FTP monitor and DNS amplifi-
cation mitigation functions, we run the same datacenter trace
as above to find the communicating pairs and matching flows
and define one policy for each. For functions that classify
hosts into sets, e.g., the firewall function with sets of internal
and external hosts, we randomly assign each host to a set.
Finally, for counter bounds, we draw random samples from
the uniform distribution on the set of possible values.

We measure the verification time for various functions,
properties, and network scales for packet-less and packet-
based models. Note that increasing the network size in this
manner results in larger models. For each experiment, we run
20 repeated trials, each trial with a time budget of 1,000 sec.,
i.e., we stop the verification process when the verification
time exceeds 1,000 sec. We give a brief overview of our
packet-based baseline below before presenting our results.

Packet-based transition systems as the baseline: A pow-
erful technique for scaling static verification is slicing the
network into a set of equivalence classes (ECs) of pack-
ets [33,34,43]. Each EC is a set of packets that always experi-
ence the same forwarding actions throughout the network [43].
As shown in prior work, this approach can be extended to
model dynamic networks [35]. To do so, one can detect a pro-
gram’s ECs using verifiers that classify packets into ECs [43].

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 265

Rule Init Priority Match Action
R0 true 100 (protocol=UDP) & (source IP=A) & (c0 < X) send()
R1 true 100 (protocol=UDP) & (source IP=A) & (X c0 < m) drop()

Table 2: A UDP flood mitigation function.

Alternatively, and similar to Kinetic [35], the programmer may
be tasked with providing ECs and their transition systems.

In the packet-based transition system, each node represents
a state of the network, i.e., the set of ECs in that state. For
instance, for the IDPS in Figure 1, in the initial state, two ECs
exist in the network: EC0 that includes all packets destined to
I and with port number 2222 and EC1 that includes all remain-
ing packets. Transitions are the events that change the state
of the network, e.g., receiving packets from the ECs whose
forwarding actions update the network’s forwarding behavior.
In the example above, receiving packets from EC0 transitions
the system into another state in which three different ECs
exist: EC2 that includes all packets from I that are destined
to F , EC3 that includes all packets not included in EC2 that
are sent to I with port number 2222, and EC4 that includes all
packets not included in EC2 and EC3.

We implement this packet-based model as our baseline.
For classifying packets into ECs in this baseline, we use the
heuristic developed in VeriFlow [43]. Despite their similar-
ities, the packet-based model and Kinetic [35] have a few
key differences: the greater expressiveness of our program-
ming abstraction (e.g., to allow for matching on shared packet
counters) increases the difficulty of the verification problem.
Plus, in contrast to Kinetic that requires operators to provide
the state machine as an input, the packet-based model au-
tomatically generates these from the rules written on our
one-big-switch abstraction.7 Thus, despite their conceptual
similarities, we refrain from calling our baseline Kinetic.

Our results demonstrate that the packet-less model is faster
than the packet-based model for different categories of live-
ness properties such as “leads-to” (e.g., host A sending traffic
to host B leads to A being blocked) and “eventually” (e.g., host
A is eventually blocked). Figure 5 (a) and (b) show examples
for a UDP flood mitigation function (Table 2) which deploys
a per-source IP counter that is incremented for every UDP
packet and starts dropping packets when the counter exceeds
a threshold. Verifying a leads-to property—host A sending
more packets than a threshold leads to it being blocked—in a
network with 100 hosts, for example, is 7.8⇥ faster with the
packet-less model than the packet-based model (85 vs. 667
sec.). In 1,000 sec., the packet-less model verifies a different
liveness property, “eventually” (A is eventually blocked), for
networks that are 3.5⇥ larger than those verifiable with the
packet-based model (105 hosts vs. 30). By reducing the size of
the state machine, the packet-less model also improves the ver-

7In Kinetic, a knowledgeable operator can conceivably provide compact
state machines, smaller than the packet-based model, and hence experience
lower verification times.

 0.01

 0.1

 1

 10

 100

 1000

 40 80 120 160M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(a) Leads-to (liveness)

 0.01

 0.1

 1

 10

 100

 1000

 30 60 90 120M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(b) Eventually (liveness)

 0.01

 0.1

 1

 10

 100

 1000

 30 60 90 120M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(c) Absence (safety)

 0.01

 0.1

 1

 10

 100

 1000

 30 60 90 120M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(d) Universality (safety)

Figure 5: Packet-less verification reduces the verification time of
different properties for a flood mitigation function.

ification time for safety properties. Figure 5 (c) and (d) show
examples for an “absence” property (host A is never reach-
able) and “universality” (A is always reachable), respectively.
Similarly, verifying the same liveness and safety properties,
e.g., “eventually” and “universality”, in a stateful firewall (Ta-
ble 13) is, respectively, 3.3⇥ and 4.9⇥ faster with the packet-
less model than the packet-based model in a 30-host network
(figures not shown).

We observe that greater degrees of state sharing across
rules (e.g., counters shared by multiple rules) result in slower
verification for both approaches, but the performance degra-
dation is more pronounced for the packet-based model, e.g.,
for a rate limiter (Table 5), in 1,000 sec., we can verify an
“eventually” property in networks with up to 90 hosts with
the packet-less model (v.s. 105-host networks for the UDP
flood detection application above), and for networks with at
most 15 hosts with the packet-based model (v.s. 30 hosts for
the UDP flood detection application above). Figure 6 shows
the results for a liveness and a safety property for this func-
tion. The packet-less model can verify them for network 6⇥
larger than the packet-based model, and even for small-scale
networks, it is at least two orders of magnitude faster.

In addition to testing the scalability with respect to the
network (and consequently the model) size, we also scale
properties. Verification time is a function of the size of the
transition system and the property formula, e.g., there exists an
LTL model-checking algorithm whose running time depends
linearly on the size of the transition system and exponentially

266 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Property LTL specification [17, 21] Meaning and example
Leads-to (a.k.a Response) G(P ! FS) P must always be followed by S, a host showing a malicious activity

must always be followed by the IDPS blocking the host.
Universality GP P always holds, e.g., A is always blocked.
Absence G¬P P never holds, e.g., A can never send traffic to B.
Eventually (a.k.a Existence) FP P eventually happens, e.g., A can eventually reach B.
Precedence FP ! (¬PU(S^¬P)) P must always be proceeded by S, e.g., blocking a host must always be

proceeded by the host exhibiting some malicious activity.

Table 3: List of properties verified.

 0.01

 0.1

 1

 10

 100

 1000

 30 60 90M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(a) Eventually

 0.01

 0.1

 1

 10

 100

 1000

 30 60 90 120M
ed

ia
n

ve
rifi

ca
tio

n
tim

e
[s

]

Network size [num hosts]

Packet-based
Packet-less

(b) Universality
Figure 6: Verification times for a rate limiter.

 0.01

 0.1

 1

 10

 100

 1000

 250 500 750 1000

Ve
rifi

ca
tio

n
tim

e
[s

ec
.]

Specification size

Net size: 100
Net size: 20

(a) Packet-less

 1

 10

 100

 1000

 250 500

Ve
rifi

ca
tio

n
tim

e
[s

ec
.]

Specification size

Net size: 20
Net size: 10

(b) Packet-based
Figure 7: The property size does not impact the verification time.

on the length of the LTL formula [20]. Although in practice,
the structure size is usually the dominant factor in determin-
ing the verification time, in our approach, the size of property
formulas can potentially be large and increase the verification
time.8 To test the sensitivity of the verification time to the
property size, we first construct atomic propositions for reach-
ability of randomly selected (with replacement) hosts, e.g.,
(dst=A,send(A)). Then, we use logical operations to build
formulas of various sizes out of these atomic propositions,
as explained in §3, e.g., (dst=A,send(A))^(dst=B,send(B))
for a property with size 2. Finally, we use these assertions
to construct the liveness and safety properties listed in Table
3. We observe that scaling the property size does not affect
the verification time of either approach. For the same UDP
flood mitigation function as above, in a network with 200
hosts, changing the property size from 1 to 200, results in
a standard deviation of less than 7.2. This holds even for
smaller networks where the relative impact of the property
size is expected to be greater. Figure 7 shows two examples
for verifying F(^h2S(dst=h,send(h)), i.e., eventually, all the
hosts in the set S will become reachable, for small networks
with 10, 20, and 100 hosts.

8Recall that in a packet-less model, we also need to express properties in
terms of Boolean formulas on rules (§3.3.2).

5 Related Work

Static network verifiers [33,34,39,42,43,61] verify various as-
pects of reachability invariants such as loop-freedom and lack
of blackholes on a snapshot of the network. More recently,
reachability verification and enforcement techniques are ex-
tended to incorporate degrees of dynamism [10, 22, 26, 40, 48,
60], e.g., with failures and policy changes [26, 27, 29, 31, 38,
52], with mutable data planes [48], and with focusing on con-
trollers instead of snapshots of the data plane [10, 11, 22, 60].
However, the targeted properties in all these proposals are
safety invariants such as reachability and loop-freedom. Our
focus on verifying a computationally more complex category
of properties (liveness) drives our novel packet-less model,
which is distinct from prior models. Plus, some of the assump-
tions in prior work restrict the set of network functions that
they can verify. VMN, for example, models network functions
in which (a) flows are independent, and (b) forwarding is not
affected by transaction orderings. We find that many crucial
network functions such as IDPS and Trojans detectors [16]
do not possess those properties.

We share the goal of designing verifiable programming lan-
guages with VeriCon [9], FlowLog [46], and Kinetic [35], but
since our programs are compiled to P4 programs (instead of
the OpenFlow rules that VeriCon’s CSDN language, FlowLog,
and Kinetic programs are compiled to), we are able to express
programs that these frameworks cannot, e.g., programs with
multiple rules that share counters. Plus, VeriCon’s use of first-
order logic makes it infeasible to specify dynamic properties
such as liveness. Finally, VeriCon, FlowLog, and Kinetic are
packet-based. Kinetic, for example, extends the Pyretic con-
troller [44] to add support for the verification of dynamic
networks based on packet equivalent classes [35]. In Kinetic,
the programmer needs to specify “located packet equivalence
classes” (LPECs), maximal regions of the flow space (e.g.,
packets with a given source IP) that experience the same
forwarding behavior in each state, and their associated finite
state machines (FSMs) that encode the handling of LPECs.
We show experimentally and theoretically that compared to
packet-based approaches deployed in these proposals, our
packet-less approach results in faster verification.

Many recent projects in network verification leverage clas-
sical concepts of model checking to control the state explo-

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 267

Rule Init Priority Match Action
R0 true 100 (TCP flag=SYN) & (source IP=A) & (0 c0 < X) send()
R1 true 100 (TCP flag=SYN) & (source IP=A) & (X c0 < m) drop()

Table 4: A heavy-hitter detection function.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (0 c0 < v1) send(port=1)
R1 true 100 (source IP=A) & (v1 c0 > v2) send(port=2)
R2 true 100 (source IP=A) & (v2 c0 < v3) send(port=3)
R3 true 100 (source IP=A) & (v3 c0 < v4) send(port=4)
R4 true 100 (source IP=A) & (v4 c0 < v5) send(port=5)
R5 true 100 (source IP=A) & (v5 c0 < m) drop()

Table 5: A simple rate limiter.

sion challenge in verifying dynamic systems such as slic-
ing [48, 50], symbolic execution [48, 57, 63], and abstraction
refinement [53]. Our work shares similarities with these in
terms of the high-level techniques for scaling verification (e.g.,
we also use symbolic modeling and abstraction). As our tar-
geted properties (liveness vs. safety invariants) are different,
however, our application of these techniques diverges from
existing works, e.g., we deploy symbolic representation not to
abstract packet header fields (as NoD does for verifying reach-
ability invariants in dynamic networks [40]), but to abstract
away packets altogether. Works on verifying networks via test-
ing [24] and simulations [25, 51] are complementary to our
approach. Via applying model checking, we strive to provide
a fully automatic verifier that, unlike testing and simulation,
searches the state space of our abstraction exhaustively.

6 Limitations and Future Work

The focus of our work is on functional correctness; this leaves
out large sets of functions and properties, including those
focused on path and traffic engineering properties (is a path
congested? is the load balanced across multi-paths? etc.). Our
one-big-switch abstraction is not suited for programming such
functions. Plus, while a familiar abstraction to operators, the
one-big-switch abstraction is relatively low-level. An inter-
esting direction for future research is developing higher-level
abstractions amenable to efficient liveness verification.

Our verifier is not a “full-stack” one; it is not designed
to verify low-level properties such as memory safety and
crash freedom that tools such as Vigor [62] and VigNAT [63]9

can verify and does not verify the compiled P4 code. Conse-
quently, tools such as compiler verifiers (such as p4v [39]),
P4 debuggers (e.g., Vera [56])), and testers are still essen-
tial to guarantee the faithful implementation of our verified

9VigNAT [63] partitions programs into stateful and stateless components.
While the stateless component is verified automatically via applying symbolic
model checking, the verification of the stateful part is done via theorem
proving and requires human assistance. In Vigor [62], the function code that
cannot be symbolically executed is stored in a specialized library and verified
by experts using theorem proving (i.e., writing proofs).

abstractions, e.g., to detect and debug switch firmware and
P4 compiler bugs. Finally, while our packet-less modeling
improves the verification time compared to a packet-based
model and enables the verification of complex properties such
as liveness ones, the absolute verification times remain high
for large-scale networks (note the logarithmic scale in fig-
ures). Further reducing the verification complexity of stateful
functions remains an open challenge.

7 Conclusion

Modern networks rely on a variety of stateful network
functions to implement rich policies. Correct operation
of such networks relies on ensuring that they support key
liveness properties. Unfortunately, despite exciting recent
work on network verification, no existing approach is
practical for, or applicable to, validating liveness. We take
a top-down approach to this problem by first designing a
new programming model built with verification in mind. It
offers natural extensions to the convenient one-big-switch
abstraction and allows decomposition of different network
functions. We develop a novel encoding of these programs
under dynamic events such as network state changes using
Boolean formulas that can capture rich semantics (e.g.,
counters) while also ensuring that the encoding remains
bounded-size and amenable to fast liveness verification. We
develop a compiler that translates our programs into those
runnable on modern hardware. Our evaluation shows that
the programming model can succinctly express a variety of
functions, our compilation is fast, our encoding is compact
and orders of magnitude more scalable to verify than naive
encodings, i.e., it results in substantial verification speedup.

Acknowledgments: We thank our shepherd, Meg Walraed-
Sullivan, Nate Foster, Loris D’Antoni, Aws Albarghouthi, and
the anonymous reviewers for their valuable comments. We
gratefully acknowledge the support of the National Science
Foundation through grant CNS 1910821.

268 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Floodlight forwarding module. https://floodlight.atlassian.

net/wiki/spaces/floodlightcontroller/pages/9142336/

Forwarding.

[2] OpenFlow. openflow.org.

[3] P4 behavioral model repository. https://github.com/p4lang/

behavioral-model.

[4] Project Floodlight. http://www.projectfloodlight.org/

floodlight/.

[5] AL-SHABIBI, A., DE LEENHEER, M., GEROLA, M., KOSHIBE, A.,
PARULKAR, G., SALVADORI, E., AND SNOW, B. OpenVirteX: Make
your virtual SDNs programmable. In HotSDN (2014).

[6] ALPERN, B., AND SCHNEIDER, F. B. Recognizing safety and liveness.
Distributed Computing 2, 3 (1987).

[7] ARASHLOO, M. T., KORAL, Y., GREENBERG, M., REXFORD, J.,
AND WALKER, D. SNAP: Stateful network-wide abstractions for
packet processing. In SIGCOMM (2016).

[8] BAIER, C., AND KATOEN, J.-P. Principles of model checking. 2008.

[9] BALL, T., BJØRNER, N., GEMBER, A., ITZHAKY, S., KARBYSHEV,
A., SAGIV, M., SCHAPIRA, M., AND VALADARSKY, A. VeriCon:
Towards verifying controller programs in software-defined networks.
In Sigplan Notices (2014), vol. 49.

[10] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. A
general approach to network configuration verification. In SIGCOMM
(2017).

[11] BECKETT, R., GUPTA, A., MAHAJAN, R., AND WALKER, D. Control
plane compression. In SIGCOMM (2018).

[12] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic char-
acteristics of data centers in the wild. In IMC (2010).

[13] BORDERS, K., SPRINGER, J., AND BURNSIDE, M. Chimera: A declar-
ative language for streaming network traffic analysis. In USENIX
Security Symposium (2012).

[14] BOSSHART, P., DALY, D., GIBB, G., IZZARD, M., MCKEOWN,
N., REXFORD, J., SCHLESINGER, C., TALAYCO, D., VAHDAT, A.,
VARGHESE, G., ET AL. P4: Programming protocol-independent packet
processors. SIGCOMM CCR 44, 3 (2014), 87–95.

[15] BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L.,
AND HWANG, L. J. Symbolic model checking: 10ˆ20 states and beyond.
Inf. Comput. 98, 2 (1992).

[16] CARLI, L. D., SOMMER, R., AND JHA, S. Beyond pattern matching:
A concurrency model for stateful deep packet inspection. In CCS
(2014).

[17] CHECHIK, M., AND PAUN, D. O. Events in property patterns. In SPIN
(1999).

[18] CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, F., AND ROVERI, M.
NUSMV: A new symbolic model verifier. In CAV (1999).

[19] CLARKE, E. M., GRUMBERG, O., AND PELED, D. Model Checking.
MIT press, 1999.

[20] CLARKE, E. M., HENZINGER, T. A., VEITH, H., AND BLOEM, R. P.
Handbook of model checking. 2016.

[21] DWYER, M. B., AVRUNIN, G. S., AND CORBETT, J. C. Patterns in
property specifications for finite-state verification. In International
Conference on Software Engineering (1999).

[22] FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R., MILLSTEIN,
T. D., SEKAR, V., AND VARGHESE, G. Efficient network reachability
analysis using a succinct control plane representation. In OSDI (2016).

[23] FAYAZ, S. K., TOBIOKA, Y., SEKAR, V., AND BAILEY, M. Bohatei:
Flexible and elastic DDoS defense. In USENIX Security Symposium
(2015).

[24] FAYAZ, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR, V.
BUZZ: Testing context-dependent policies in stateful networks. In
NSDI (2016).

[25] FOGEL, A., FUNG, S., PEDROSA, L., WALRAED-SULLIVAN, M.,
GOVINDAN, R., MAHAJAN, R., AND MILLSTEIN, T. D. A general
approach to network configuration analysis. In NSDI (2015).

[26] GEMBER-JACOBSON, A., VISWANATHAN, R., AKELLA, A., AND
MAHAJAN, R. Fast control plane analysis using an abstract representa-
tion. In SIGCOMM (2016).

[27] GHORBANI, S., AND CAESAR, M. Walk the line: Consistent network
updates with bandwidth guarantees. In HotSDN (2012).

[28] GHORBANI, S., SCHLESINGER, C., MONACO, M., KELLER, E., CAE-
SAR, M., REXFORD, J., AND WALKER, D. Transparent, live migration
of a software-defined network. In SoCC (2014).

[29] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M., GILL, V.,
NANDURI, M., AND WATTENHOFER, R. Achieving high utilization
with software-driven WAN. In SIGCOMM (2013).

[30] JAYARAMAN, K., BJØRNER, N., PADHYE, J., AGRAWAL, A., BHAR-
GAVA, A., BISSONNETTE, P.-A. C., FOSTER, S., HELWER, A., KAS-
TEN, M., LEE, I., ET AL. Validating datacenters at scale. In SIGCOMM
(2019).

[31] JOHN, J. P., KATZ-BASSETT, E., KRISHNAMURTHY, A., ANDERSON,
T., AND VENKATARAMANI, A. Consensus routing: The Internet as a
distributed system. In NSDI (2008).

[32] KANG, N., LIU, Z., REXFORD, J., AND WALKER, D. Optimizing the
one big switch abstraction in software defined networks. In CoNEXT
(2013).

[33] KAZEMIAN, P., CHAN, M., ZENG, H., VARGHESE, G., MCKEOWN,
N., AND WHYTE, S. Real time network policy checking using header
space analysis. In NSDI (2013).

[34] KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header space
analysis: Static checking for networks. In NSDI (2012).

[35] KIM, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER, N., AND
CLARK, R. J. Kinetic: Verifiable dynamic network control. In NSDI
(2015).

[36] KOPONEN, T., AMIDON, K., BALLAND, P., CASADO, M., CHANDA,
A., FULTON, B., GANICHEV, I., GROSS, J., INGRAM, P., JACKSON,
E. J., ET AL. Network virtualization in multi-tenant datacenters. In
NSDI (2014).

[37] LAMPORT, L. What good is temporal logic? In IFIP congress (1983),
vol. 83.

[38] LIU, H. H., WU, X., ZHANG, M., YUAN, L., WATTENHOFER, R.,
AND MALTZ, D. zUpdate: Updating data center networks with zero
loss. In SIGCOMM (2013).

[39] LIU, J., HALLAHAN, W., SCHLESINGER, C., SHARIF, M., LEE, J.,
SOULÉ, R., WANG, H., CAŞCAVAL, C., MCKEOWN, N., AND FOS-
TER, N. P4v: Practical verification for programmable data planes. In
SIGCOMM (2018).

[40] LOPES, N. P., BJØRNER, N., GODEFROID, P., JAYARAMAN, K., AND
VARGHESE, G. Checking beliefs in dynamic networks. In NSDI
(2015).

[41] LUDWIG, A., ROST, M., FOUCARD, D., AND SCHMID, S. Good
network updates for bad packets: Waypoint enforcement beyond
destination-based routing policies. In HotNets (2014).

[42] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P., AND KING, S. T. Debugging the data plane with Anteater. In
SIGCOMM (2011).

[43] MAI, H., KHURSHID, A., AGARWAL, R., CAESAR, M., GODFREY,
P., AND KING, S. T. VeriFlow: Verifying network-wide invariants in
real time. In NSDI (2013).

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 269

[44] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing software defined networks. In NSDI (2013).

[45] MOSHREF, M., BHARGAVA, A., GUPTA, A., YU, M., AND GOVIN-
DAN, R. Flow-level state transition as a new switch primitive for SDN.
In HotSDN (2014).

[46] NELSON, T., FERGUSON, A. D., SCHEER, M. J., AND KRISHNA-
MURTHI, S. Tierless programming and reasoning for software-defined
networks. In NSDI (2014).

[47] OWICKI, S., AND LAMPORT, L. Proving liveness properties of con-
current programs. TOPLAS 4, 3 (1982).

[48] PANDA, A., LAHAV, O., ARGYRAKI, K. J., SAGIV, M., AND
SHENKER, S. Verifying reachability in networks with mutable datap-
aths. In NSDI (2017).

[49] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON, E. J., ZHOU, A.,
RAJAHALME, J., GROSS, J., WANG, A., STRINGER, J., SHELAR, P.,
ET AL. The design and implementation of Open vSwitch. In NSDI
(2015).

[50] PLOTKIN, G. D., BJØRNER, N., LOPES, N. P., RYBALCHENKO, A.,
AND VARGHESE, G. Scaling network verification using symmetry and
surgery. In SIGPLAN Notices (2016).

[51] QUOITIN, B., AND UHLIG, S. Modeling the routing of an autonomous
system with C-BGP. IEEE Network 19, 6 (2005).

[52] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER, C., AND
WALKER, D. Abstractions for network update. In SIGCOMM (2012).

[53] RYZHYK, L., BJØRNER, N., CANINI, M., JEANNIN, J.-B.,
SCHLESINGER, C., TERRY, D. B., AND VARGHESE, G. Correct by
construction networks using stepwise refinement. In NSDI (2017).

[54] SIVARAMAN, A., CHEUNG, A., BUDIU, M., KIM, C., ALIZADEH, M.,
BALAKRISHNAN, H., VARGHESE, G., MCKEOWN, N., AND LICK-
ING, S. Packet transactions: High-Level programming for line-rate
switches. In SIGCOMM (2016).

[55] SIVARAMAN, A., KIM, C., KRISHNAMOORTHY, R., DIXIT, A., AND
BUDIU, M. DC.P4: Programming the forwarding plane of a data-center
switch. In SOSR (2015).

[56] STOENESCU, R., DUMITRESCU, D., POPOVICI, M., NEGREANU, L.,
AND RAICIU, C. Debugging P4 programs with Vera. In SIGCOMM
(2018).

[57] STOENESCU, R., POPOVICI, M., NEGREANU, L., AND RAICIU, C.
Symnet: Scalable symbolic execution for modern networks. In SIG-
COMM (2016).

[58] SUBRAMANIAN, K., D’ANTONI, L., AND AKELLA, A. Genesis:
Synthesizing forwarding tables in multi-tenant networks. In POPL
(2017).

[59] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HUDAK, P.
Maple: Simplifying SDN programming using algorithmic policies. In
SIGCOMM (2013).

[60] WEITZ, K., WOOS, D., TORLAK, E., ERNST, M. D., KRISHNA-
MURTHY, A., AND TATLOCK, Z. Bagpipe: Verified BGP configuration
checking. In OOPSLA (2016).

[61] XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREENBERG, A.,
HJALMTYSSON, G., AND REXFORD, J. On static reachability analysis
of IP networks. In INFOCOM (2005).

[62] ZAOSTROVNYKH, A., PIRELLI, S., IYER, R., RIZZO, M., PEDROSA,
L., ARGYRAKI, K., AND CANDEA, G. Verifying software network
functions with no verification expertise. In SOSP (2019).

[63] ZAOSTROVNYKH, A., PIRELLI, S., PEDROSA, L., ARGYRAKI, K.,
AND CANDEA, G. A formally verified NAT. In SIGCOMM (2017).

8 Appendix

Table 1 lists the functions that can be represented in our
language. Below we write these functions on our one-big-
switch abstraction.

Simple counter: A packet counter for every source, desti-
nation IP address pair (Table 6).

Port knocking: Open a certain port O by attempting to
open a connection on a prespecified closed port K (Table 7).

Simple firewall: Allows traffic between certain source,
destination MAC addresses (Table 8).

IP rewrite: Rewrite IP address of all traffic coming from
and directed to a particular IP address (Table 9).

Simple rate limiter: There are multiple implementations
of this function. The first example (Table 5) assumes different
ports are capable of sending traffic at different rates. It uses
per-source IP counters to decide the traffic rate.

The second example (Table 10) uses counters on subsets
of traffic to decide what traffic will be forwarded normally,
redirected to a rate limiter, or dropped.

Firewall/ACL: Allows or Blocks traffic based on certain
packet fields (Table 11).

Phishing/Spam detection: A per-MTA (Mail Transfer
Agent) counter to detect MTAs that send a large amount of
mail (Table 12).

Simple stateful firewall: A firewall that allows only the
traffic whose connection was initiated by a host in I, where I
is the set of departmental addresses (Table 13).

FTP monitor: Allows traffic on data port only if it received
a signal on the control port (Table 14).

Heavy-hitter detection: A per-source IP counter that is
incremented for every new SYN. It starts dropping packets
when the counter exceeds a threshold value (Table 4).

Super spreader detection: Similar to heavy-hitter detec-
tion, the counter is incremented for every SYN. But it is also
decremented for every FIN.

Sampling based on the flow size: This can be done using
two tables. The first table (Table 15) uses counters to classify
the flow size into three categories - small, medium, and large.
It adds this metadata information into the packet (e.g., using
the QoS field). The second table (Table 16) samples packets
based on its flow size, using its own counters.

Elephant flow detection: This is similar to sampling based
on flow size, where flows of large size are elephant flows.

DNS amplification mitigation: Allows DNS reply
(source port=53) to a particular IP only if it receives a DNS
request/query from that IP (Table 17).

UDP flood mitigation: A per-source IP counter that is
incremented for every UDP packet. It starts dropping packets
when the counter exceeds a threshold value (Table 2).

Application chaining: Our language can represent non-
linear chaining of applications. For example, consider a sys-
tem that wants to rate-limit phishing and heavy-hitter traffic.
This can be represented in our language using three tables.

270 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (0 c0 < m) send()

Table 6: Simple counter.

Rule Init Priority Match Action
R0 true 100 (source MAC=M) & (destination port=K) add(R1),add(R2)
R1 false 100 (source MAC=M) & (destination port=O) send()
R2 false 100 (destination MAC=M) & (destination port=O) send()

Table 7: Port knocking.

Rule Init Priority Match Action
R0 true 100 (source MAC=A) & (destination MAC=B) send()
R1 true 100 (source MAC=B) & (destination MAC=A) send()

Table 8: Simple firewall.

Rule Init Priority Match Action
R0 true 100 (source IP=A) modify(source IP=X),send()
R1 true 100 (destination IP=X) modify(destination IP=A),send()

Table 9: IP rewrite.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (0 c0 < v1) send()
R1 true 100 (source IP=A) & (v1 c0 < v2) send(rate limiter)
R2 true 100 (source IP=A) & (v2 c0 < m) drop()

Table 10: Simple rate limiter 2.

Rule Init Priority Match Action
R0 true 100 (source IP=A1) & (destination IP=B1) & (source MAC=M1) & (destination MAC=N1) send()

& (source port=P1) & (destination port=Q1)

R1 true 100 (source IP=A2) & (destination IP=B2) & (source MAC=M2) & (destination MAC=N2) drop()
& (source port=P2) & (destination port=Q2)

Table 11: Floodlight firewall/ACL.

Rule Init Priority Match Action
R0 true 100 SMTP.MTA=A add(R1),add(R2),delete(R0),send()
R1 false 100 (SMTP.MTA=A) & 0 c0< X send()
R2 false 100 (SMTP.MTA=A) & X c0< m drop()

Table 12: Phishing/spam detection.

Rule Init Priority Match Action
R0 true 100 (source IP=I) & (destination IP=E) add(R1),delete(R0),send()
R1 false 100 (destination IP=I) & (source IP=E) send()
R2 true 50 source IP=I drop()

Table 13: Simple stateful firewall.

The first table does phishing detection (Table 12), the second
one does heavy-hitter detection (Table 4), and third one does
rate-limiting (Table 5). The first table sends suspicious traffic

to the third table (instead of drop()) and normal traffic to the
second table (instead of send()). The second table sends suspi-
cious traffic to the third table (instead of drop()) and forwards

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 271

Rule Init Priority Match Action
R0 true 100 (destination port=portcontrol) & (source IP=A) & (destination IP=B) add(R1),delete(R0),send()
R1 false 100 (source port=portdata) & (source IP=B) & (destination IP=A) send()

Table 14: FTP monitor.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (0 c0 < v1) modify(flow=small),send(Sampler Table 2)
R1 true 100 (source IP=A) & (destination IP=B) & (v1 c0 < v2) modify(flow=medium),send(Sampler Table 2)
R2 true 100 (source IP=A) & (destination IP=B) & (v2 c0 < m) modify(flow=large),send(Sampler Table 2)

Table 15: Sampling based on the flow size - Sampler Table 1.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (flow=small) & (c0 = 5) c0 = 0,send()
R1 true 100 (source IP=A) & (destination IP=B) & (flow=medium) & (c0 = 500) c0 = 0,send()
R2 true 100 (source IP=A) & (destination IP=B) & (flow=large) & (c0 = 50000) c0 = 0,send()

Table 16: Sampling based on the flow size - Sampler Table 2.

Rule Init Priority Match Action
R0 true 100 (source IP=A) & (destination IP=B) & (destination port=53) delete(R0),add(R2),add(R3),send()
R1 true 10 source port=53 drop()
R2 false 100 (source IP=A) & (destination IP=B) & (destination port=53) send()
R3 false 100 (source IP=A) & (destination IP=B) & (source port=53) send()

Table 17: DNS amplification mitigation.

non-suspicious traffic normally using send() action.

272 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

